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SECTION I

INTRODUCTION

Assessment of the potential impact of finite element concepts, applied

in the construction of numerical solution algorithms for computational

fluid mechanics, is required and under active study. The formal elegance

of the methodology has produced a sound theoretical basis for the com-
prehensive computational simulation capabilities now extant throughout

structural mechanics (ref. 1). The verification of this impact in fluid

mechanics remains to be achieved, and is the principal focus of this re-

search project.

In its most elementary interpretation, finite element theory returns

calculus and vector field theory to the construction of discrete simula-

tion algorithms for any branch of mechanics. Of necessity, using Taylor

series expansions, one must always be able to verify the equivalent (finite

difference) order-of-accuracy, for any of the familiar derivative terms

within the governing partial differential equation system. Specifically,

linear (quadratic) finite elements yield, equivalently, second-(fourth-)

order finite difference representations for linear spatial derivatives.

For other than linear space derivatives, however, the finite element con-

struction yields expressions that are not usually familiar, although upon

dissection, can be related to appropriate Taylor series expansions. The

important feature is that the theory produces the discrete analog expres-

sions, completely independent of the a postereor ability to construct an

equivalent difference representation.

In fluid mechanics, confidence in the theoretical statement can only

be attained through detailed numerical assessments for progressively more

complicated (and non-linear) pertinent differential equation descriptions.

This is the basic mission of the University of Tennessee project in compu-

tational fluid mechanics. Strict adherence to the convergence theory has

been verified for linear, scalar parabolic partial differential equations

(ref. 2), using linear, quadraticand cubic Lagrange, and cubic Hermite

finite element interpolations within the basic theoretical statement.

Importantly, for a non-homogeneous gradient boundary condition, of the

type omnipresent in computational fluid mechanics, this study verified



equal or higher-order convergence for the discrete analog produced by

the theory. Reference 3 documents adherence to convergence theory, for

solutions of the mildly non-linear (parabolic) laminar boundary layer

equations, for both linear and quadratic embodiments of the finite element

theory. Extraneous error mechanisms served to obliterate attainment of

the theoretical performance for the cubics, Similar verifications for

the linear and quadratic formulation, for the consequentially non-linear

parabolic turbulent boundary layer equations is reported in reference 4.

Of primary theoretical consideration, the Sobolev norm used to measure

onvergence was a strongly non-linear function of the dependent variable

set, yet the theory accurately quantized algorithm performance,

Viscous flows at large Reynolds number, and inviscid flows are charac-

terized by dominance of the substantial derivative. The generally dis-

persive character of the discrete analog is the dominant error mechanism.

Reference 5 documents accuracy and convergence assessments for scalar

convection problems, driven by linear and non-linear hyperbolic equations.

The numerical results were highly encouraging, specifically with respect

to phase accuracy and the selectivity of the derived dissipative finite

element algorithm statement. The results reported herein are an exten-

sion of these theoretical and numerical considerations. The basic von

Neumann stability analysis has been refined and extended. Numerical re-

sults are presented for solution of the complete Euler equations, for

shocked one-dimensional flows, that firmly quantized performance and

resolution of discontinuous variables. The formulation is extended to

a two-dimensional description in generalized coordinates, including de-

tailed construction of the tensor matrix product form of the algorithm

Jacobian. For low speed Flow prediction, a differential constraint theo-

retical formulation for the continuity equation is derived and evaluated.

2



SECTION II

PROBLEM STATEMENTS

The requirement is to assess the key aspects of accuracy, convergence,

stability and efficiency of finite element numerical solution algorithm

concepts applied to computational aerodynamics. These performance measures,

as quantized by analysis and numerical experiments on simplified scalar

equations modeling key aspects of the governing Navier-Stokes equations,

were reported in reference 5. The current research extends the developed

algorithm concepts to differential equation systems governing certain

problem classes in aerodynamics. Each class is selected to permit isolation

of a key theoretical and/or practical aspect. This section summarizes

the various differential equation descriptions.

The partial differential equation set governing transient, three-

dimensional aerodynamic flows is the familiar and very non-linear Navier-

Stokes system. Each equation system studied is derived from the Navier-

Stokes equations. In non-dimensional conservation form, using Cartesian

tensor summation notation, the equation system governing flow of a com-

pressible, viscous, heat-conducting fluid is

L(p) = + a[ujp] 0 (1)

L(Pu at + a pu + P& 0 (2)LP i) = -at axj j[ i +  P ij - ijI =

L(pe) = a(pe) + 2 -[u.pe + ujp - oiju i  qj] = 0 (3)at axj ,j i ~

In equations 1-3, p is density, pui is the momentum vector, p is pressure,

and e is mass specific total energy. The Stokes viscous stress tensor ij

and heat flux vector qj, in terms of specific internal energy c, are

j = au. +u k

3 (4)

3



qj - x (5)

: e - uiu i  (6)

Assuming a polytropic gas, p = (y-1)pe, the convenient form for the equation

of state is

L(p) = p - (y-l)[pe - 1puju.] = 0 (7)

Finally, p is the absolute viscosity, K is the coefficient of heat conduc-

tivity, and 6ij is the Kronecker delta.

One special form of equations 1-7 for analysis corresponds to supersonic

one-dimensional shocked flow in a duct of variable cross-sectional area,

A(x). The specific form is

L(p) = - + -- (pu) + puA' = 0 (8)

L(pu) = 91u + -- [upu + p] + pu2A' = 0 (9)at ax

L(pe) = 2pe + - [upe + up] + pueA' = 0 (10)
at ax

where A' d(zrjA)/dx. Equation 7 is unchanged by limiting j 1. A

second form for analysis describes two-dimensional, subsonic laminar

flow of a viscous non-heat conducting fluid. This is obtained from equations

1-7 by setting K =_ 0 and constrainingthe index range 1 < (i,j) < 2. It

is further permissible to assume p is constant for this case.

Many confined aerodynamic flows exhibit a predominant direction

of flow which permits a simplification to equations 1-7 yielding the

so-called parabolic Navier-Stokes equations. Assuming the steady, constant

density flow isothermal and turbulent, and employing the Reynolds velocity

decomposition (ref. 6 ), the time-averaged parabolized form of equations

1-7 is

L(po) - uj] : 0 (11)

ax j 
.



L(ui) u + + uiu : 0 (12)

ij= v(1-6j )a (13)

In equations 11-13, the overbar signifies the time-averaged mean variable,

the underbar signifies the index is not eligible for summation, and the

flow is assumed essentially aligned with the x, coordinate direction,

where 1 < (ij) < 3.

A closure model for the Reynolds stress tensor u:u! is required.

Present requirements are served using the constitutive equation (ref. 7

U:U C k6i - k,2 _a1 .
1 jy V ax. ax._ C _ 31ul j  lkij laxj + (14)

L7 9 - 1 J~L ax. ax ()

where 1 < z < 3. The various correlation coefficients Ca are defined

(ref. 8). The variables k and E are the turbulence kinetic energy and

isotropic dissipation function, respectively.

k - i u:u: (15)

2 au: u12[vxj u 1 k (16)

They are solutions to the corresponding parabolic form of the governing
differential equations (ref. 6),

L(k) -axjk a

L~)=a1 uk+(1-6.1(C Tuju4- - v ax.

+ uu + C 0 (17)

5



L(E) - xj je + (1-6j,) (cE , j 3)

+ C uiu, j j + C2T (18)

The correlation coefficients Ck and Ca have been determined from analysis

and experiment (ref. 8).

6
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SECTION III

NUMERICAL SOLUTION ALGORITHM

1. Finite Element Formulation

The Navier-Stokes equation system, and the various sub-systems for

study have been expressed. Denote the dependent variable set for any

given equation system as {q} with members qi" Then, for the one-dimensional

Euler equations 7-10, {q}T = (p, pu, pe, p}, for the two-dimensional

laminar flow Navier-Stokes simplification of equations 1-7, {q} = {p, Pu1

puz, p), and for the three-dimensional turbulent, incompressible parabolic

Navier-Stokes equations 11-18, {q}T = {u19 u2, u3, p, k, c). Upon noting

that the x, coordinate in equations 11-18 spans the domain of evolution

of the solution, i.e., xie[x ,x), the various developed problem statement

differential equation systems, excepting the incompressible continuity

equation 11, takes the general form.

aq. F1
L(qi ) tqi1 + _.X{ujqi + fij + fi = 0 (19)

In equation 19, fi .(qj) and fi(qj) are specified non-linear functions

of their arguments, as determined by the particular equation system.

For example, for equation 12, fi ( 6i -ij + u0u),f i  0, while

for equation 8, f i = 0 and fi = puA,?°

The n-dimensional partial differential equation system (19) is defined

on the Euclidean space Rn, spanned by the x coordinate system with scalar

components xi, 1 < i < n, and - is a generalized initial-value coordinate.
n

The solution domain 0 is defined as the product of R and T, for all

elements of x belonging to Rn and all elements of T belonging to the

open interval measured from to, i.e.,

o Rn x T = {(xT): ERn and Tc[,o,t)1

The boundary ap of the solution domain is the product of the boundary

aR of Rn, spanned by X, and T, i.e., ap aR x T. Thereupon, a differential

constraint may be applied of the form

7



(qi) = alq i + a2 x qin. + a3 : 0 (20)

In equation 20, the ai are specified coefficients and ni is the outwards

pointing unit normal vector. Finally, an initial distribution for qi

on oo - Rn x To is required.

qi ( x T ) = qi(OX) (21)
1 1

The dissipative finite element solution algorithm for equations 19-

21 is a modest extension on the form detailed in reference 5 . The ap-
hproximation q.(xjT) to the (unknown) exact solution qi(xj,r) to equations

19-21, is constructed from members of a convenient finite-dimensional

subspace of HI(), the Hilbert space of all functions possessing square

integrable first derivatives and satisfying the boundary condition 20.

While extremely flexible in theory, the usual practice is to employ the

most elementary functions (polynomials truncated at degree k) defined

on disjoint interior subdomains Qe, the union of which forms the discreti-

zation of fl. Hence,

Mh eqi (x qi(x'T) F I q i(xT) (22)
e=l

and the elemental approximation definition is

qe(x,t) 0 001T{QI(T)}e (23)

In equations 22-23, i(I) is a free index denoting members of {qh}, and

sub- or super-script e denotes pertaining to the e- finite element,

e Re x T. The elements of the row matrix {Nk(X}are assumed poly-

nomials on xi, 1 < j _ n, complete to degree k and constructed to form

a cardinal basis (ref. 9).

The functional requirement of the numerical solution algorithm is

to render the error in qh minimum in some norm. Based upon previousi

experience (ref. 5 ), this is accomplished within the context of the

finite element algorithm by requiring the error in equations 19 and 20,
8



nh h

i.e., L(qh) and 2(q ) be orthogonal to the space of functions employed
"h

to define qi. To control non-linearly induced instabilities, it is further

required that the error in vL(qh) also be orthogonal to {Nk}. For the

parabolic Navier-Stokes equations (as well as the incompressible Navier-

Stokes equations), it is also required that the continuity equation 11

be applied as a differential constraint on solution of equations 12-

13. Identifying the (Lagrange) multiplier set Bi, these four independent

constraints are linearly combined to form the theoretical statement of

the finite element solution algorithm.

[ n{Nk}L(q')dx + 'kf n{Nk}vL(q )d' + 52f }t(qh +d 03fRVN}L(pi)dti
f R nk Rn k i' R Rn k L(od

{0} (24)

Upon selection of k in equation 23, equation 24 represents a system

of ordinary differential equations on T, of the form

[C]{QI} + [U]{QI} + [FIJ]{QJ} + {FI} = {0} (25)

A one-to-one correspondence of terms in equations 25 and 19 is inferred,

with the matrices in equation 25 augmented to contain the various additional

terms introduced through ai 0 in equation 24. (Detailed expansions

are presented in a latter section.) An efficient, accurate and versatile

integration algorithm for equation 25 is the trapezoidal rule, see reference

2 . Hence.

{FI} H {QII)~ l - {QI}j - L[{QI} l + {QI1A E {0} (26)

defines the system of non-linear algebraic equations for determination

of the elements of {QI(T)}.

The Newton iterative solution algorithm for equation 26 is

[J(FI) P {6QIP+I= -{FI}+ (27)11+1 j+j+1

The dependent variable in equation 27 is the iteration vector, related

to the solution in the conventional manner.

9



{Q}Pl {Q1)P + {6QII? 1  (28)

j+l j+l J+l

The form of the Jacobian is,

[J(FI)] = IFI (29)

the detailed construction of which is direct upon expansion of the equation

24 in terms of the hypermatrix formulation (ref. 3 ).

2. Generalized Coordinates

The classical approach to geometric flexibility using a finite element

algorithm has been to utilize boundary conforming discretizations, as

obtained using isoptr&aetric triangulation in two-dimensions, for example,

and retaining the global coordinate system description within equation

19. The alterr.tive orocedure, which has become universal with finite
difference methods in computational aerodynamics, is to generate a boundary

conforming ceaa;"-,%te transformation, and manipulate the solution statement

19 onto the transformed coordinate system. Only modest differences exist

between this I'9ncept and the isoparametric finite element formulation.

However, the transformation of the algorithm statement 24 to the transformed

(regular) grid introduces a considerable flexibility and efficiency previously

absent in the classical finite element formulation.

The basic requirement is to generate and utilize a regularizing

coordinate transformation, that maps generally curved-sided domain boundaries

ARn onto coordinate surfaces of the unit square (cube). The coordinate

system n spanning the transformed domain is (assumed) orthogonal and
regular; the coordinate transformation is simply

= xi (nj) (30)

The particular procedure utilized to establish equation 30 is ancilliary

to this development, but includes methods utilizing Poisson equation

solutions (ref. 10) or any other analytical or numerical procedure (cf.,

ref. 11). Specifically, one candidate algebraic procedure is application

10



of the classical finite element isoparametric and bi-quadratic cardinal

basis {N2(n)1 to interpolation of the nodal coordinate distributions

defined for sub-domains R of Rn. Figure 1 illustrates the concept;m
referring to equation 23, the transformation statement is,

x i ={N2 (')}T{XI)e (31)

where the elements of {XII are the values that xi takes at the location

of vertex and non-vertex nodes defining the (curved) boundaries of the
n

global subdomain of Rm . For reference, the elements of the cardinal

basis {N2(nj,n,2)I for R are

(1 nl)(l - n2)(-n1 - n2 - 1)

(I + n)(l + n2)( n1 + n2 - l)
S (1- nz)(l + n2)(-nl + n2 - 1)

i 2(l -l )(l - n2)2(1 + TI,)(l - T)12-

2(1 - T1)(l + n2)
2(1 - nj)(l + n')2 (32)

The elements of {N2( )} for Rm are given in reference 1 , Ch. 8.

Returning to the issue, the differential requirement is transformation
of the divergence operator in equation 19, i.e.

= - an a (33)~
3 

anj

The elements of the inverse Jacobian J- =_ [ani/ax ] are evaluated as,
[ani.1 _~ j- 

__

j d [transformed cofactor of J] (34)

where

[J] - ~nj (35)

11
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Figure 1: Biquadratic Cardinal Basis Coordinate Transformation

12

a' -



is directly evaluable using equation 30 or 31. Furthermore, the differential

element for equation 24 is

d= = det[J]d (36)

Consider, for example, equation 19 corresponding to the momentum

equation 2, and using the Green-Gauss form of the divergence theorem, the

first term in equation 24 becomes
h

h aBpu ihJ{NL ~n{)dN} det[J]d

RnN i R at

+,R{N} fak)h h h hj hi

+ INj hpu i  ph6ij _e ij] dt[l~

- f {N} IT Uynk + P6 - det[J]dn (37)R Sn an a j ujpuIi + phij 1 i

Identify the contravariant components of convection velocity,

-h det[J] rank h (38)Uk

with scalar components parallel to the nk coordinate system. Note that in

using an algebraic transformation, equation 31, det[J] cancels in equation

34 yielding

5h = [Cof.J] Uh (39)

where [Cof.J] is the transformed co-factor matrix of [J]. Otherwise,

only the elements ank/axjare known at node coordinates, and equation
38 is evaluated directly.

Using equations 22-23, 38-39, and neglecting the surface integral

for the moment, equation 37 becomes

13



fnhUBARK}S (DET {N}(N}{N T
R n eLfR n e{HU~

- {UBARKT{N} -- - {N}{NIT{RHOUI}edn

5Re {N}{N}T{P}edne ank
e

+ n {ETAKJ7 {N} -I- {N}{N}T{sIGIJ}d (40)
f Rn nthek

Re e n

For equation 40, since the {NkI for q i are locally defined on R e the

limits for the integrals correspond, and Se is the operator projecting

element contributions to the corresponding global matrices, equation

25. Furthermore, the determinant of J is assumed interpolated on the

element domain Rn using {Nk} and the nodal values. Similarly, (ank/aX i)

is recast as its interpolate {ETAK}U'4e tk} (and also detd(ank/ xj)). The

e-subscripted terms in equation 40 are independent of nk and can be extracted

from the integrand, leaving only products-of the polynomials and derivatives

in {Nk}. These are directly evaluable, independent of the particular

choice for equation 30, using numerical quadrature. Hence, the stan-

dardized solution form, for the first term in equation 24, as formed

from equation 2, is

Rn{d - [{DET}T[M3OOO]fRHOUIPe

- {UBARK} T[M3O KO]{RHOUI}e

- {ETAKI} T[M3OKO]{P}e e

+ {ETAKL}T[M30KO]{SIGIL}eJ (41)

14
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In equation 41, the indices K and L obey the tensor summation rule, Ih
is the free index (for Pu.), Se is the assembly operator, and [M3OKO]

is the hypermatrix equivalent of 9/nj (transformed) contracted with corres-

ponding element distributions. From the standpoint of the coordinate

transformation, {DET}e is the nodal distribution of det [J] on Re, while
e e{ETAKIJ e and {ETAKLI e are corresponding nodal distributions of components

of J-1 on Rn.
e

Within this generalized coordinate framework for the finite element

algorithm, the grid and metric data required for a numerical simulation

are the nodal distributions of J-1 = [9nk/axj], det [J] = det [axi/nk],

and the elemental partition measures A e* These parameters need only

be sufficiently smooth such that interpolation on the elemental domain

Rn makes sense. Using a Poisson equation-generated coordinate transformation,e
for example, these parameters are globally smooth since they are determined

non the global domain R . Alternatively, the transformation parameters

constructed on the union of macro-domainsRe is further discretized into
m

the union of finite element domains Re and J is smooth on Rm*

3. Tensor Matrix Product Jacobian

From 'he standpoint of efficiency, it is desirable to construct

a tensor matrix product form of the Jacobian defined in equations 27 and
29. Such a construction is readily accomplished, provided the tensor

product cardinal basis function set {Nk()} is utilized, spanning quadri-
lateral and hexahedron domains on R2 and R3 respectively. In this instance,

the Jacobian matrix [J(FI)], equation 27, is replaced by the tensor (outer)

product construction

[J(FI)] - [J1] P[J2]( [j31 (42)

Each component [Ja] is constructed from its definition, equation 29,

assuming interpolation and differention are one-dimensional. The cor-

responding formalism in finite difference methodology is called approximate

factorization cf., ref. 12. Using equation 42, the solution statement

27 becomes

[1])[J2])[J3] {Q P+l = {FI+ (43)

j+l J+l (3

15



Def ine

p+l ~
[J 21® [J3]{6QI}j+I - p+l

D31f6I) + -{P} +'(44)

Then, the operational sequence for equation 43 is

1p}+l _ {FI}+j+l J+l

[J2]{P21 +' {Pllp+'
J+l j+l

[J3]{6QI} p+l = (45)j+l =  j+l

Obviously, other permutations of the index structure for [Ja] could

be utilized for equations 44-45. The key aspect of the tensor matrix

product Jacobian is the replacement of the very large (albeit sparse)

matrix [J], with a block-diagonal structured matrices [Jc]. The primary

attribute is up to several orders of magnitude reduction in computer

core storage requirements for the Jacobian, as well as significantly

reduced CPU to construct the LU decomposition and perform the back sub-

stitution. It must be emphasized that this procedure in no way affects

the formation of {FI}, equation 27, wherein lies the acr u'cy feev .r Q.s

intrinsic to the finite element algorithm statement, e4vation 24. Compromises

in the construction of {FI will invariably produce inferior results

for equation 19 non-homogeneous and a vector.

As an example of construction of [JDa], consider only the initial-

value term equation 37. The corresponding term in the Jacobian, equation

29, using equations 25, 26 and 41, is

a{Fl} : Seke {DET}T[M3OOO J] (46)

16



where 6 is the (discrete index) Kronecker delta. Then, referring to

equation 40,

[J] e = A e DETI e [M3000] f n IDETT e{Nk( )}{Nk()){Nk(4}Td7)
R T

Assume for simplicity the most elementary case, i.e., k = 1, n = 2 and

- E n, i.e., identity coordinate transformation. Equation 47 becomes,

assuming M - B for n z 2

A{ONE)T[B3000] A [B200] f {N1 (-()}{N(X)}Td (48)

e

Assuming the rectangular element domain R2 described by measures z and W,

the evaluation of equation 48 yields

4 21 2
[J] = A [B200] = [B200] : 4211 (4936 449)

[(sym) 4

The tensor product construction for this matrix involves the evaluation

of equation 48 constrained to one-dimension. Hence, denoting M - A for

n = 1,

[Pl]e Ae[A200] = f {N1(x )}{N(x)}T dx (50)

and e

L1] -9~[2 1]

[jI2 e  = g! (51)e 6L1 2]

assuming ' = t and A2 = w . By keeping track of entry locations in [J],e eit is easy to show that

Pile® P 2.de = Idle (52)

The extension to more complicated terms in the Jacobian, and to k > 1,

n > 2, builds upon the elementary concept.

17



SECTION IV

THEORETICAL ANALYSIS

In reference 5 , an elementary truncation error analysis was doc-

umented for the one-dimensional linear form of equation 24, assuming

33 - 0. The results of numerical experiments reported therein indi-

cated that superior accuracy accrued to definition of a family of co-

efficients P1, with distinct values utilized in each term in equation

24, as produced for the study equation

L(u) 2q + Uo ,
x = 0 (53)

A comprehensive von Neumann stability analysis has been completed

for equation 53, assuming that {vAe, v2Ae i, where and x are

employed for the first and second terms in equation 53, respectively.

The Fourier solution for equation 53 is

q(x,t) = V exp [iwo(x-Uot)] (54)

The semi-discrete Fourier solution is

qh(jAx,t) = V exp [iw(jAx-Ft)] (55)

Here, r - + i6, where a and 6 are real numbers, i = / T-, w = 2n/X is

the wave number for wavelength X, and V is the initial distribution.

Using the linear finite element basis, k=l in equation 23, the algo-

rithmic statement (equations 24-25) for equation 53 can be written in

the finite difference recursion form (ref. 5 ),

Se[[Ca]We{Q}e = -[(l+3v)QJ-1 + 4Qj + (1-3v,)Qj+l} (56)

Se [Uaje {Q~e U1~ [-(1+2V2)Qj-l + 4V2Qj + (1-2V2)Qj+l]

18



= O Q + Q.1  + UOV2 IQ~i+2Q ~ 1  (57)

assuming a uniform discretization of R of measure AO. The second form

in equation 57 emphasizes the role of Uov 2 as a "viscosity." Substitut-

ing equation 55 in 56-57, and proceeding through the lengthy algebra

yields

[ - 2d +T + 0(d 6) + V 2 d2  - + 0(d6)

=

2 + d[d2 d + 0(d()1Uo~v(. + + + 0(d6) + \)t - + 0(d)
1- .T +T + 0(d6)] + vlEd -3 ( ~ ~ (8

where d - jAx and 0 indicates order. Expanding the denominator and retain-

ing all terms to order d6 yields

0 uo I - V1 (V1 - V2 )d2 + to + + ( v 2 )d4 + 0(dG)1 (59a)

U4(Vl - V2  - - V 1  V2 ) }d3 + O(ds) (59b)

Setting v, V2 v - 1/,T5 yields the results of reference 5.

a , Uo[I + O(d6)]

(S Z UO6 L2 + 0(ds) (60)

19



as obtained by requiring the third coefficient in equation 59a to vanish.
The corresponding level of artificial diffusion (6) is documented as ex-
cessive for the linear and nonlinear example problems computed in refer-
ence 5. By not requiring v, and v2 be equal, enforcing sixth order accur-
acy in equation 59a yields

2 d2  V4d 2

= 1 8- 
(61)

v 1 (l - v d2 )

Noting that d = wAx = 27r/n, since the approximate solution resolves dis-

crete wave lengths Xn = nP, equation 61 can be solved for a range of

V] > 0 and n 2. Figure 2 is a plot of this solution. Only for large n
is the relationship linear, for v, sufficiently large, and all solutions

converge at vi = 1VI-9 = V 2.

The linear and nonlinear two-dimensional pure convection test cases,

originally reported in reference 5 , were computationally reexamined.

Figure 3 illustrates a typical final solution for the linear rotating

cone test case, with its attendant loss in peak level and trailing dis-

persion wake. Table 1 summarizes solution inaccuracy on these basis, as

well as loss of symmetry, for a range of vi and v2 . The best accuracy

accrues to use of v, z 0.01 and v2 /vl ; 0.75. Both levels are well be-

low the optimal order-of-accuracy determination, see Figure 2, or the

elementary analysis results v2 = V1 = V = 1b/S. This determination

changes only modestly over the Courant number range 0.1 < C 5 0.7, and is

unchanged using the conservative form for equation 53.

Figure 4 illustrates a typical final solution for the nonlinear

traveling square wave test case, wherein Uo in equation 53 is replaced by

the dependent variable q. Table 2 summarizes solution accuracy in the

wave center region, in terms of plateau level, depth of the precurser wake

and the spread of the wave front (in units of mesh measure A). For the

nonconservative form of equation 53, the "optimal" V2 = i/VIS and setting

vi zero yields an acceptably accurate solution, except for the spread to
4A of the original IA interpolation of the wave. Decreasing V2 by /2

sharpens the front and induces a modest peak at the plateau interface.

For the conservative equation statement,

20
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Figure 3. Final Station Solution for Rotating Cone Test Case,
Linear Finite Element Algorith'm, \1 0 =V 2 -
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Table 1

Rotating Cone Solution Accuracy Summary

Linear Finite Element Algorithm, C=0.5

Dissipation Solution Error (Percent)
Levels

V V2 Peak Symmetry Wake

.0 .0 -7.0 -1.0 -17.0

.0 .0076 -22.0 -5.0 -9.0

.012 .0076 +2.0 -2.0 -21.0

.012 .0092 -2.0 ±0.0 -19.0

.012 .0114 -7.0 +0.0 -16.0

.015 .0076 +10.0 -6.0 -26.0

.030 .0076 +17.0 -50.0 -74.0

.258 .258 -22.0 - 0.

Table 2

Non-Linear Square Wave Solution Accuracy Summary

Linear Finite Element Algorithm, C = 0.5

Dissipation Solution Error

Level s x (1/vTS) Wave Precursor Wave Algorithm

Peak Wake Spead Form

.0 I/b7 +.07 -.05 2 Non-Conservative

.0 1.0 -.04 -.05 4

.0 . -.13 -.06 4

.0 1.0 +.21 -.10 2

.0 r +.09 -.05 2 Conservative

.0 2.0 -.04 -.05 4

.10 -.01 -.05 2

.15 .00 -. 05 2

.20 +.Ol -.06 2

.10 1.0 +.ll -.11 2

1__ 2_ +.15 -.09 2



L (q) - ~.+ ±(q 2 ) = Q
at 2 ax

the "optimal" level of V2 is multiplied by 2 for compensation. The wave

front sharpness is refined without inducing a plateau peak by setting

V1/V2 - 0.1. These determinations remain generally valid over the range

of useful Courant numbers.

The square wave test was repeated for the linear advection equation

53. Even though the problem specification is linear, the resultant coarse

grid introduces unacceptable dispersion error to the non-dissipative solu-

tion, see Figure 5a. Figure 5b illustrates the error control achieved

usingv 2 = i/v1/ and v 1 /V 2 = 2/3, and Table 3 summarizes solution fidelity

on the same basis as the non-linear square wave. These results further

confirm the utility of distinct levels for v, and V2.

Table 3

Linear Square Wave Solution Accuracy Summary

Linear Finite Element Algorithm, C = 0.5

Dissipation Solution Error

Levels x (/"11M) Wave Precursor Wave

Peak Wake Spread
V2 (%) (A)

.0 .0 +.40 -3 2

.5 1.0 .00 -1 3

.67 1.0 .00 -1 3

1.0 1.0 .26 -5 2
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Viewing these results, it is apparent that modest levels of v, cay

exert a profound impact on solution fidelity in both linear and nonliinar

applications. The correction mechanism appears as inducement of a lead; ng

phase error that compensates for the lagging error intrinsic to the basic

algorithm. Selecting optimal order-of-accuracy as the criterion for de-

termination of V2 does not appear inappropriate for the linear problem,

for which the Fourier analysis is exact. In concert, this analysis

does estimate the near-optimal level of v2 for the nonlinear problem.

Viewing Figure 2, the coordinate V 2 
= 2/v/, V1 /v2 = 0.1, lies near the

centroid of the distribution on n, indicating existence of the computa-

tional compromise.

The von Neumann stability analysis has been extended to the quadratic

element algorithm statement, k = 2 in equation 23. For a uniform dis-

cretization, with Ae = 2Ax, the finite difference recursion relation forms

for the two terms in equation 53, at the vertex nodes of the discretiza-

tion, are

Sef[C]e{Q}e] 4 A [-( +5-v)Qj- 2 + 2 (I+lOvi)Qj+l + 8Qj

+ 2(I-0v,)Qj+l 1  (63)

Se[[Ua ] {Qle] =0 U°6 [(1+2\)2 -4(I+4v 2)QJ- l + 28V2Qj

+ 4(I-4V2 )Qj+1 -(l-2v2)QJ+ 2]

- U [Qj-2 - 4Qj-l + 4Qj+l- QJ+2]

+3 [Qj-2 - 8Qj-l + 14Qj -
8 Qj+l + Qj+2] (64)
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The second form for equation 64 again emphasizes the role of \,2U, as a
"viscosity." Inserting equation 55 in 63-64, and proceeding through the

lengthy algebra yields a simultaneous equation system for a and 6. Ex-

panding the determinant and retaining all terms to 0(d') yields

a [1 [I-4\i\)2 + d(-14 + 184vlV 2 - 60v2 + 240 V3\2

+ d 4 2- 54- 15 V 2 + 16V4 64\.v2

+ (65)

Equation 65 indicates the quadratic element algorithm only second order

accurate for v, = 0 and/or V2 = 0. Numerical experience, to be discussed,

indicates v, = 0 and V2 - O(1/v') is preferable for accuracy. The recur-

sion relations for the non-vertex nodes of the quadratic algorithm are

provided by equations 56-57, by making the identities j => j+l and j => j-l.

Hence, the interaction of these two relations, in concert with v, = 0 ,

must reinforce to provide the excellent phase accuracy associated with use

of the quadratic element formulation.

As will become documented, this linearized theoretical analysis does

accurately estimate approximate levels for v, and "'2 . Importantly, the

theoretical statement of the finite element algorithm, equation 24, is

confirmed to induce a phase-selective dissipation capable of controlling

non-linearly induced instabilities as well as distributed phase celerity.

The progression to more complete equation systems is required for further

quantization.
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V. DISCUSSION AND RESULTS

1. One-Dimensional Compressible Flow

Equations 7-10 express the conservative formulation for one-

dimensional, inviscid compressible flow in a duct of variable cross-

section. The nonconservative form is

L(p) = 2t + u~x + u + puA' = 0 (66)

t 5X P'x F
L(u) = au I +OU2 A- = 0 (67)

De ae U-a aupeAo(8
L(e) = 3t+ ua+ +R; + pueA 068

L(p) = p - (y-l)p(e- u2 ) = 0 (69)

For the dissipative, finite element algorithm statement, equation

24, 3 = 0 is appropriate for either equation system. Denoting the

elements of {QI) and {FI}, 1 < I < 4, as {R, U, E, P} and {FR, FU, FE,

FP} for clarity, the algorithm statement equation (26) then becomes, for

the nonconservative continuity equation 66, for example

{FR} = ([A200] + vl[A210]){R}j+I j + t [{U}T([A3001] + [A3100]){RI

+ v2{U}T([A3011] + A3110]){R} + {U}T([A400O]{A}){R}] I
j+l ,j

t {o} (70)

The A-prefix on the matrices in equation 70 denote a one-dimensional

evaluation of the corresponding integrals in equation 24. By defining

a common denominator, the elements of each matrix are integers with

values dependent strictly on the degree k of the approximation poly-

nomial, equation 23. These matrices, for 1 < k < 2, are given in

28
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Appendix A. The Boolean index 1 indicates the location of the spatial

derivative within each term, the 0 indicates simple interpolation, and

v, are the dissipation parameters for the dependent variable p. The in-

dex pair j+l,j denotes evaluation of each term in brackets, using

{QI}+ i and {QI}j, and summing, while { }j+lj denotes {QI}P+ 1 - {QI}i,

see equation 26.

The form of equation 70 is particularly attractive for programming,

as well as generation of a Jacobian, and a modest expansion for k =

elements illustrates the notational structure. In particular, see

Appendix A, for k = 1,

[A210] ~ 2 ](71)
The time-derivative term in equation 66, when inserted into equation 24.

yields two terms

fRi {Nk} dx R 1 -L dx

Se[f {Ni}{Ni}Tdx {R}_

e

- \) efAeR - {Ni}{Ni}Tdx {R}J

e

: SeAe [A200]e {R}e - v1 [A2I0]{R}eJ (72)

Inserting equation 71 into 72, assuming Ae uniform, and assembling (Se)

the element contribution at a common node "j" yields identically

equation 56. If Ae was not uniform, then the finite difference recur-

sion relation 72 would have to reflect this, as is already embedded

within the hypermatrix form in equation 70. By the same token, for Ae

and ue uniform, equation 57 is the finite difference recursion relation
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equivalent of the first convection term in equation 66,

J Nkju-dx - -i N ) u2-xdx

RR x - k 9x

R TRI +2 T [R} 1
Se[Ae Ue [A el e V1Ue [ e01 ej

({U}T [A30011 + V~{U}T [A3011]j{M (73)u

The remaining two terms in equation 70 stem from p L and puA'; hencec~dx

R5 k 0[0i -5x+puA' Idx T- Sij .k } rxd

- Se e{R}e [A300l]{U}e + v2{RIT [A3Oll]{Ule

+ Ae{UIel{[A4000l]{Ale1{Rel

E uT[A3I]{R} + v2 [U}T [A3110]{R}

uT [[A40001]{A}eJ{R }  (74)

The two right side forms for equation 74 illustrate transposition of

pre- and post-contraction vectors. The elements of {A)e are element

nodal values of knA(x), and [A40001] is of global rank two and hyper-

rank two, see Appendix A.

The finite element algorithm statements for the remaining equations

67-69 are

{FU} = }T([A30001 + v'[A30l0]3{U}+

+ _"t [(RT([A400lo{) {U} + [A201]{P}

30



+ v2 {RT([A40110]{U}){U}

+ {R}T({U}T[A500001]{A}){U},J : {0} (75)

{FE} {R}T([A3000] + v'[A30I0]){E}j+I j

+ At[{R}T ([A400lO]{U}){E}+ {u}T ([A3001] + [A31oo]){P}

22

+ v 2 {R} T([A40110]{U}){E}

+ {R}T ({u}T[A5000l]{A}){E}] I

= {0} (76)

{FP} [A200]{P} - (y-l){R}T[A3000]{E}

+ 1-4R }T([A4oOO]{U}){U} = {0} (77)
2

In equations 75-76, the matrix [A500001] is of hyperrank three, i.e.,

the elements are square matrices with column matrices as elements.

Equation 77 is simply the interpolation equivalent of an algebraic

equation.

The next requirement is to construct the Jacobian of the iteration

algorithm, equation 27. From its definition, equation 29, and equations

70, 75-77

a{FR}
} [JRR] = [A2001 + v'[A210]

+ At {U}T[[A3001] + [A3100] + v[A3011]
2 3
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+ v [A31101 + [A40001){A]
j+1

~{R [JRU] - [[R} EA31001 + CA3001] E 2 A31101

+ V 2[A30111 + [A4Ooo1]{A)]p

[JRE] [0]

[JRP] [0] (78)

[JU -{U ui([A3000] vi[A3O10])

~{FU1 [JuR] 2 j+l

!+ I } [A40001]{U} + v2[A41100]{Ul

+ {U} T[A50000l]iA]

[JUU] MT {}(A3000] + v'[A3O10])

+ 1t{R 1T [A400101 + [A40001] + v 2[A40110]

+ v[A4O101]){U}

+ 2({U} T[A500001](Al)]

[JUE) [0)

EJUP] = - - [A201] (79)

23



a{FE} [JER] =-!E _ T([A3000) + vl[A3010)
2 J+1 E

+ t {ET[[A40001]{U} + V2 [A411OO]{U}

+ fTrEooo} 3]

+ {U} T[A500001]{A3

T(A40011I+ PT[A 100 ] +[A00])

[JEE] {RI-T[A0] +E vA 3

2

+ {} [100Q + A]{,p 1)

[JEP] = At }T[A 3 001] + [A3100] (0

+ L {RI T [JPR]1]{ + 2 [IA401010{ 1

[J+U {U [TY[A)50T[A1]{Alu

[JEP = - (y{ IT [A300+ 00] ] (0

PPJI = (yA200] (81)000
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Note in the formation of equations 79-81, that the Boolean indices

in the various A-matrices are permuted to facilitate differentiation of

each expression by the last right contraction matrix. Note also the

considerable commonality pervading the Jacobian construction. The

elements of each Jacobian are formed on the finite element domain R'e,
using the element matrices listed in Appendix A, and then assembled

into the global form using the operator Se* In actual practice, the

column matrix {6QI} is ordered on degrees of freedom at a node, e.g.,
T

{..., Rj, 6UP 6E, 6Pj, 6Rj+ I  ... Hence, the global Jacobian [J],

equation 27, is block tri-diagonal, using the linear (k = 1) finite

element formulation, and block penta-diagonal for quadratic (k = 2)

elements.

For the conservative form of the governing differential equation

system 7-10, identify the volume-specific dependent variables m Pu and

g H pe, yielding

L(p) = )2 + -L Em + mA] = 0 (82)

L(m) + _j_[m2/p + p] + m2/A/x = 0 (83)

L(g) = -t + -L [(mg/p + mp/p)] + m/p(g+p),A/x =0 (84)

L(p) = p - (y-l) [g - m2/2p] = 0 (85)

For equations 82-85, A is defined as Zn A(x). The omnipresence of in-

verse density can be eliminated by introducing the (contravariant) con-

vection velocity ( ) v H m/p; hence,

L (p)+ pvA 0 (82A)
atm amx_

L(m) - + -[vm + P] + mv;)Alx (83A)
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L~)=1 [vg + vpj + V(c,+p)DA/@x =0 (84A)

L(p) =p - (y.-1) [9- vm] = 0 (85A)

The finite element solution algorithm statement, equations 24-26,

applied to equations 82A-85A, yields

(FRI =([A200] + vl[A2l0]){Rj

+ .1 0]oW + V2{V)T [A301I]{R)

+ WIT ([A41000]{VJ){RI] =+1 {0} (86)

(FM} (CA200] + v'[A210]){M}'.

+ {V [~T[A3ol1Ml- [A210]{P}

2 v~VT[A3011]{M} + JAI T ([A41000]{V}){M]~ 1

1 0} (87)

(FG} = (A200] + v'[A210]){G}'+

+ Y- LV} T A301o]{G} + {VI T[A3010){P}

+ v 2{V} T[A3OllJ{G} + {A} T ([A41000]{V1){GP} ,

- O} (88)
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UFPI =[A200]{P} - (y-1)[EA200]{G} - ( V}T[A3000){M] M 0 (89)

Note that equations 86-89 are rather less complicated in appearance than

equations 70, 75-77, and in conformation with the multi-dimensional

generalized coordinates formulation, see equation 41. The definition

of convection velocity has been utilized for the dissipation (v') term

in equation 86 to enhance overall uniformity., and {GP} =_ {G + P}.

The construction of the Jacobian contributions for the Newton iter-

ation algorithmn, equations 27-29, proceeds directly. Recalling that

v =m/p, and using the chain rule as required,

-{FR I E [JRR) = [A200] + 1[20

[JRM) = L [A2101h + V2 [A211] + JAI T[A3100]]p

[JRG] = 0

[JRP] = 0 (90)

D{FM} 2[At3110]T

[JMR] = - ~-j }- [A3010] + V2[3 0

+ A40001]{A}1

+j~

[JMM] =[A200) + vl[A210]

+ At vT [[A3010] + V2 [A30111 + (A40001]{A} ]

+ L 4(){M T[[A301O] + V2 [A3110] + [A40001]{A}]p

22
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- JGR) =-- pjLG} ([A3010] + )'CA310] + [A40001]{Al)

+ {P1}T [A3010)

EJG14] - ..(- [{G}T ([A3010] + v'[A311O] + [A40001]{AI)

+ {P}T[EA 3010 j

[JGG] [A200] + \)jA210]

+#4{V}T [A3010] + V2 [A3011] + [A40001]{Af

TF 1 3 +

[JGP] "t iV} T[A3O1O] + [A40001]{Ali (92)2t L j+1

= ~ y [1R M [M~} [A30001j

rJPM 1 1 Y[V} T [A30001 + {M1J4TM[A30001]

[JPG] -(y-1)[A200]

[JPP] [A200] (93)

In equations 91-93, the superscript bar on m and p indicate the assembly

of elemental averages of the variable, i.e., i~ {AlO} T{Meg e =
{AOT{R The various defined matrices are listed in Appendix A,

for k =1 and 2 in equation 23.
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2. Numerical Results, Riemann Shock Tube

The primary requirement for the computational tests is to

evaluate the various dissipation constants within the finite element

algorithm for compressible flowfields possessing sharp gradients and

shocks. An equally important requirement is to assess construction of

the Jacobian; specifically, is the favorable quadratic convergence rate

for the Newton iteration algorithm retained in the present formulation?

Two test cases meeting these requirements are the Riemann problem and

off-design (shocked) flow in a nozzle. Following some numerical exper-

imentation, the nonconservative formulation, equations 70, 75-77, was

relegated to history in favor of the conservative algorithm form.

The Riemann problem corresponds to the one-dimensional, ex-

ploding diaphragm shock tube experiment (see Shapiro, ref. 13., page

1007), with uniform sound speed in both the high and low pressure

chambers. Upon (computational) removal of the diaphragm, a shock wave

propagates into the initially low-pressure region, and a rarefaction

wave propagates in the opposite direction. The more interesting case,

corresponding to different initial sound speeds in the two chambers,

has been recently examined in considerable detail by several researchers

in computational methodology. Particular reference has been made to

establishment of the "ultimate" flux-corrected conservative difference

scheme, cf., Sod (ref. 14), Van Leer (ref. 15), Zalesak (ref. 16).

These methods generally employ a Lagrangian, or mixed Lagrangian-

Eulerian formulation, in distinction to the implicit, strictly Eulerian

finite element algorithm, which is not at all "hard-wired" for the

problem.

The selected Riemann problem specification corresponds to that

of Sod (ref. 14), wherein a unit duct length is uniformly subdivided by

100 nodes. The diaphragm is located at node 50, with the initially

high pressure region occupying the left half. For the finite element

simulation, the linear (k = 1) algorithm employed 99 uniform elements,

while for the quadratic (k = 2), the last node was deleted and the

discretization contained 49 elements. The initial conditions are

u (x) 0 0, p = p = 1 for x < 0.5, p = 0.1, and p = 0.125 for x > 0.5,

38



and y = 1.4. Figure 6 shows the base case k = 1 algorithm solution, at

t = 0.14154s, for V2 = 1IvT5 and v1 = 0, where ot denotes dependent vari-

able (number) and the dissipation parameter indices (1,2) are now super-

scripts. The shock is located at node 75, and the rarefaction wave is

centered on node 62. The symbols correspond to nodal values of {QI} , while

the various solid lines bound the inviscid solution (ref. 15) for the shock,

rarefaction wave and the interspersed plateaus. Considering the simpli-

city of the k = 1 algorithm, these results are quite accurate, except for

the modestly sloped plateaus in density and momentum, and the overshoot

for all {QI} on the high pressure side of the shock.

Following some experimentation, the improved results shown in Fig. 7

were obtained for v' = 11.T5 {3/8, 0, 1/4} and V2 = I/lVT-5 {3/4, 2, 1},

for 1 5 _< : 3. The plateau in momentum and density behind the shock is

nearly planar, no overshoot occurs in any {QI}, and the shock is inter-

polated across approximately two elements. The second density plateau

is also modestly improved, but the "trashiness" in {QI} on x < 0.4 has

been somewhat aggravated. Since the velocity is zero in this region,

the algorithm is operating without any dissipation, and v1 > 0 in the

absence of dissipation is well known to induce this type of leading phase

error.

For comparison, Figure 8 is a reproduction of the results of Van

Leer (ref. 15, Figure 6), for this problem specification, as obtained

using the MUSCL algorithm. The upstream density plateau of this algo-

rithm is better, but the results in the shock vicinity are nominally

comparable. The solution parameters of velocity and internal energy

are rather better descriptions for algorithm performance, see the two

right side plots in Figure 8. Figure 9a shows these data computed from

the k = 1 solution of Figure 7. Comparing to Figure 8, the shock sharp-

ness is comparable, as is the high temperature plateau behind the shock.

The low temperature plateau behind the rarefaction wave is modestly

less planar. For comparison, Figure 9b shows these identical data as

obtained using the Crank-Nicolson implicit finite difference equivalent

of the k 1 1 algorithm, with v2 = 1/113 and v = 0 (by definition).

This ad hoc modification is again verified to degrade solution accuracy.

Upstream overshoot is excessive, the shock is interpolated across six
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difference cells, and the high temperature plateau is barely recognizable

and underpredicted.

The performance of the quadratic (k = 2) algorithm formulation

is an improvement, in accord with previous numerical experience. Figure

10 shows the k = 2 solution field {QI} at t = 0.14154 s, using the linear

analysis dissipation levels A = l/v-5, v1 = 0. The solution is devoid

of the plateaus, and the shock is smeared over several elements, in-

dicative of excess diffusion. Figure 11 illustrates the improvements
1

accrued to use of = 1v1-5 {1/4, 3/4, 1/2} and v1 = 0. The shock exists

across only one element and the density and momentum plateaus are clearly

evident. A modest level of solution "trashiness" is evidenced in both

extreme solution regions wherein the dissipation level is zero (due to

zero convection velocity). Figure 12a shows the velocity and internal

energy fields computed from this quadratic solution, and the fidelity is

generally excellent. In this instance (the quadratic element algorithm),

the reduction of the initial-value matrix to the Crank-Nicolson finite

difference equivalent does not adversely affect solution accuracy, Figure

12b, except in the high temperature plateau behind the shock.

The construction of equation system Jacobian, as presented for

both k = 1 and k = 2, retains the favorable nominally quadratic rate of

convergence. Table 4 presents the extremum elements of {QIJ, for a

typical integration step involving three iterations, and the nodal

location of these extrema. Convergence is at least quadratic, including

the algebraic pressure equation. The sharply defined solutions, as ob-

tained using minimal levels for v2', typically required 250 iterations to

reach t = 0.14154 s. This corresponds to an extremum Courant number

(C = 1u+alAt/Ax) of approximately 0.35. No attempt was made to extremize

Courant number during this study.

3. Numerical Results, Shocked Nozzle Flow

The results for prediction of an off-design nozzle problem confirm

these data for dissipation parameter levels. The test case initial con-

dition corresponds to a subsonic-supersonic expansion on 0.75 : M : 1.35,

followed by a normal shock and subsonic expansion on 0.75 : M 0.7. The

values of , .u and ,e were specified at the inlet, and p was computed from
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TABLE 4

CONVERGENCE IN {6QI} FOR RIEMANN

SHOCK TUBE SIMULATION

Iteration {SR}max Node {6M}max Node

1 -0.87325E-02 70 -0.20780E-01 70

2 0.13072E-02 69 0.31246E-02 69

3 0.21915E-03 69 0.69326E-03 69

{6G}max Node {6P}max Node

1 -0.23351E-01 70 -0.75154E-01 70

2 O.34658E-02 70 -0.51826E-02 71

3 0.46731E-03 70 -0.50114E-03 68

the equation of state. The subsonic outlet conditions, applied at the

end of a uniform cross-section extension of the nozzle, were specified

pressure and vanishing normal derivative for 0, pu and pe. For the test,

the exit pressure was raised by 15%, such that the shock must move up-

stream into a previously supersonic region of flow. At all points, up-

stream of the translating shock location, the supersonic flow must remain

undisturbed from the initial conditions. Figure 13 shows the k = 1

algorithm solution for {Q11 and Mach number distribution at t = 2.4s,

compared to the initial conditions shown as a solid line. The vari-

ables upstream of the new shock location are unaltered, and the downstream

distributions are smooth. The specified levels of dissipation parameters,

set at one-half those of the Riemann problem, were adequate to suppress

overshoot and to produce a sharply defined shock. Figure 14 presents the

similar comparison for the quadratic algorithm solution, as obtained

using one half the dissipation parameter levels of the Riemann specifi-

cation. The results are essentially indistinguishable from those of

Figure 13. 48
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4. Two-Dimensional Flow Formulation

The extension of the formulation of the dissipative finite element

algorithm to a two-dimensional flow description in generalized coordi-

nates is direct. Identify the volume-specific dependent variable set p,

mi = pu i , I < i < 2, and g = pe, and the parameters uij and q.. Recall

the definition of the convection velocity, as expressed in contravariant

scalar components u k equation 38. For a multi-dimensional problem, the

dissipation parameter a, is a vector, with contravariant scalar compo-

nents Vc.Ae , see equation 24, where ct denotes initial-or boundary-value

definition. Finally, as before for compressible flow, 3 - 0.

Equation 26 expresses the non-linear algebraic equation system resul-

ting from substitution of equations 1-7 into equation 24. Denote the dis-

crete dependent variable set {Q}T = {R, M(I), G, P, S(I,J), Q(I)}. The

respective algorithmic statements {FI} in the generalized coordinate

description ni become, see equations 37-41,

{FR} = ({DET)T[B3000] + 1j{ETAKJ}T([B40KOO]{DET})){R}j+l

+ % ETAKII [B3OKOMI1 +2 j{ETAKJ }T[B30KL]{MBARL}] (94)
j+,

{FMI} = ({DET}T[B3000] + v~j{ETAKJ} T ([B40KOO]{DET})){MI}J+I

+ 2-I{UBARK}T[B3OKO]{MI} - {ETAKI}T[B3OKOI{P}

+ {ETAKJ}T [B30KO]JSIGIJ)

+ V2j{ETAKJ }T ([B4OKLO]{MI}){UBARL1

+ v j {ETAKJIT ([B4OKLO]{UBARL}){MI)Jj+l.j (95)
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{FG} ({DET}T[B3000] + v1 {ETAKJ} T [B4OKOO]{DET})){G}1+ 1

+ [t{UBARK}T[B3OKO]({G} + P}) + {ETAKL}T[B3OKO]{QBARL}

+ {ETAKJ}T([B4OKOO]fUL}){SIGLJ}

+ Nj TAKJ}T ([B40KLO]{G}){UBARL}

+ 2 {ETAKJ}T ([B4OKLO]{UBARL}){G}j+l (96)

{FP} {DET}T[B3000]{P} - (y-l)({DET}T[B3OO]{G}

- {DET} T([B40000]{UJ}){MJ})j+l (97)

A few comments on notation in equations 94-97 are appropriate.

The matrix B-prefix denotes the expressions obtained by integrals over a

two-dimensional elemental domain, i.e., Re . The defined element matricese
are listed in Appendix B for k=l, equation 23. The concept of the Boolean

indices (0,I) is generalized to replace 1 by K, indicative of the corre-

sponding scalar component of 7> in the nk coordinate system, hence,

1 _< K < 2. In all terms, the discrete indices J, K, L occurrina in both

matrix and variable (FORTRAN) names, are tensor summation indices with

range 1 < (J, K, L) < 2. The index I is a free index denoting Cartesian

scalar components of mi. i.e., {MI}. As noted, the expansion coefficient

B>, equation 24, is expressed in Cartesian scalar components vj, with

distinct values for each dependent variable and each term. The arrays

{DET} and {ETAKJ} contain nodal values of, respectively, the determinant

J of the forward transformation xi = x(nj) and elements Tk/aXj of the

inverse transformation, seeequations 33-34. The nodal values of the

contravariant scalar components of the solution vectors Uk' and mk and

qk are denoted {UBARK}, {MBARK} and {QBARK}. The elements of {SIGIJ)
are nodal values of the stress tensor. The corresponding algorithm

statement, using the homogeneous form of equation 4, is
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{FSIJ1 = {DET} T[B300{SIGIJ}

- {ETAKJ} T ([B4OOKO1{DET1) UI}

+ {ETAKI}T([B400KO]{DET}){UJ}

_I {ETAKL) T ([B400KO]{DET}){UL}j+ (98)

where I is the Kronecker delta. The corresponding expression for

the definition of energy flux qj, equations 5-6, is,

{FQI} = {DET}T[B3000]{QI}

- K ETAKI}T ([B4OKOO]{DET})({GSR} - {UIUI})j+ l  (99)

In equation 99, the elements of {GSR} are nodal values of e = g/p,

while those of {UIUI} are nodal values of specific kinetic energy uiui .
In all equations, the notation { * }1 denotes { • - { " }j' and

].. denotes evaluation of the argument at tj+ l and tj followed by addi-

tion.

As can be observed, the finite element two-dimensional Navier-Stokes

algorithm statement in generalized coordinates, equations 94-99, is con-

siderably more involved than the predecessor one-dimensional algorithm.

By the same token,equations 94-99 also completely express the three-

dimensional algorithm by the exchange of B-prefix matrices with C and ex-

tension of the discrete tensor index range to 1 < (J,K,L) 3.

The remaining step in the algorithm formulation is construction of

the tensor matrix product form of the Jacobian,

FJ({FI}] afI} (100)[J({FI] TQJT
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equation 29. The construction and subsequent solution procedure was

outlined in Section 11.3. The lead term in each of the equations is

[DET]T[B3000]IQJlj+ l

Hence, the corresponding component of [J] is

[J]1 {QJI IDET}T[B3OOO] 1j (101)

For illustration, assume an affine rectangular Cartesian coordinate

transformation, det[J] = 1, hence {DET}T = {ONE} T , the array of unit

values. By direct substitution,

{ONE}T[B3000] = [B200] (102)

and the matrix whose tensor product yields [B200] is simply [A200], see

equations 49-51. Recalling that global expressions are obtained by the

assembly operation Se over element-level operations, equation 101 is for-

mulated as

{DET}T[B3000] Se[Ae{DET}T[B3000]e1 (103)

= A1{DET} [A3000] A2 {DET}T[A3000]e

Recall the superscripts on Ae denote the appropriate one-dimensional ele-

ment measure, e.g., length and width of a rectangular element.

The second term in the Jacobian for p and Q is

[J] 2 = V1 {ETAKJ}T[B30KO]

where I equals 1 or 4 for two-dimensional flow, and summation is implied

for repeated indices. By the direct extension of operations yielding
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equation 103,

V j {ETAKJ }T[B3OKO] Se AeV I{ETAKJ }T[B3OKO]e]

=Se ViJ{ETA1J}T[A3010e

®R Ae2iV{ETA2JI TA30IO e1 (104)

eA~ T ej

As before, the superscripts on A e denote coordinate direction, with the

corresponding indication in the elemental arrays {ETAKJ}. The element

derivative matrix [A3010] is independent of u and identical with the one-

dimensional form given in Appendix A.

The construction of certain remaining terms in the Jacobian involves

differentiation with respect to the parameter uk = mk/Q" Using the chain

rule and equation 38-39, then

+{MI} M +  + MM51MT -I 71 -MK} I } ,K) D{MI}

- MI+det y-[ D{ I 3{DKI]
{M + det {MK } + ,{

(105)
4{RT 7 7R " _DK}

which is the generalization of the one-dimensional construction. Recalling

again that all operations are performed on the elemental level, denoting

DKI as the element average of det J Ilke, and letting K signify the dis-

crete free index corresponding to )/,)nTVJthe non-empty tensor product
Jacobians for equations 94-99 are:

TT[JRR]= iDET, [A3000] + Ij{ETAKJ T[A3010]
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~. r T
[JR141 = -ETAKII [A30101

+V2 6 {ETAKJI T[A3011]
1J KI J(106)

[JMIR] 2](~~ [ (MI} T[A 3010]

+ {2 ETAKJ} T([A40110] + [A40101])iMI~j

[JMIMI] = DET }T [A3000] + v',{ETAKJ T [A401QO]{DET}

(~UBARKIT[A3010] - D - j[A00

+ Vj {ETAKJ)T{[A40101] [A40110]}({UBARK}

[JMIMJ] A 2(KJ (43 } T-M [A30101

+ V 2L{ETAKL} (([A40101J + [A40110]){MJ})]

= At

[Jr41P] --t{ETAKI } [A3010]

EJMISIJI "t %[{ETAKJ} T (A40100]{DETI)i (107)

[JGR) Fnkj[G+PIEA3olo]

+ v 2 tETAKJ} T([A40110J + [A40101]){G}]
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[JGKI P (I- G+ P T [A 30 10 ]

KIGMI]

+ 2 L{ETAKL} T(([A40101] + [A4OIIO]){MI})J

T T
[JGG] {DET} T[A3000] + \4J{ETAKJ T[A3010]

+ - - M-UBARK T[A3010]

+2 {ETAKJ} T([A40110] + [A40101]){UBARK}]+ 4j

[JGP] - {UBARK}T [A3010]

[JGSIJ] 2 .-[{ETAKJ}T(UIT[A5OO IOO]){DET )]

[JGQI] 6t tD {ETAKL}T[A3010] (108)
[JGQI] III

[JPR] = - I 2{DET}T([A4OOOO]{MK}

[JPMK] = [{DET}T([A4O00O]{UK}) + w1 {DET}T ([A40000]{MK})]

[JPG] = (y-l){DET }T[A3000]

[JPP] = {DET}T[A3000] (109)

The Jacobians for {FSIJJ and {FQI} are constructed in the manner indenti-

cal to equation 109.

Observing equations 94-109, the multi-dimensional, generalized coor-

dinate formulation is considerably more detailed than the one-dimensional

form. However, the calculus and algebra procedures build directly upon

the elementary concepts.
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5. Numerical Results

The numerical evaluation of the two-dimensional algorithm is in its

beginning stage, and only cursory results are completed. A critically

important confirmation of the tensor product Jacobian formulation is com-

pleted for the scalar dependent variable and the rotating cone test case.

Figure 15 summarizes the significant portion of the k = 1 algorithm solu-

tions fields at the quarter turn. The results in Figure 15a) were pro-

duced using the time split formulation (ref. 5 ), which may be considered

as exact. Figure 15b) shows the tensor product Jacobian algorithm results,

generated by the algorithm specification in equations 42-45 for a two-

dimensional problem. Agreement is within the ±1 band allowed by trunca-

tion of floating point to the integer data used for output. For compari-

son, Figure 15c) is the solution produced by the tensor product algorithm,

applied to equations 26-27 rewritten to account specifically for linearity,

[Ju]{Ql}j+ 1 = {RHS}j (110)

where {RHS}i is the time level j evaluation of the difference in the ini-

tial value and convection contributions, see reference 5, equation 36.

The tensor product Jacobian form of equation 110 is,

[J]{PI}j+1 = {RHS}j

[J2]{QI}j+ 1 = {PI}j+1  1111)

where {PlI is an intermediate solution. Comparing Figures 15a) - 15c)

confirms this procedure introduces significant error into the solution,

in distinction to the accurate representation provided by the (Newton)

iterative formulation.

The construction of the generalized coordinates formulation has been

validated using for comparison the potential solution to incompressible

flow about a cylinder. For this case, the contravariant components of

convection velocity correspond (to within det[J] = r) to the radial and

azimuthal velocity components. The construction of {FR} and {FMI}, and

the corresponding Jacobian tensor product matrices were also verified.

58



o 0 1 0 0 0 0 0 a 0 0
1 2 0-2-2 0 1 1 0 '0 0
2 0 -4 -3 3 12 15 11 5 1 0
L -4 -4 5 25 43 47 34 17 5 1
0 -4 -1 16 48 79/-84 42 32 11 2
0 -5 -1 18 56 93 101 76 40 14
0 -4 -3 13 44 17\-85" 44 33 12 2

L -2 -3 4 23 42 48 35 LS 5 1
2 0 -3 -3 2 11 14 10 4 1 0
1 1 0 -2 -2 0 0 0 0 0 0
0 1 2 1 0 0 0 0 0 0 0

a) Time-Split Algorithm Solution

0 0 0 0 0 0 0 0 0 0 0

o 1 0 0 0 0 0 0 0 0 0

2 0 -3 -1 5 12 13 8 3 0 0
o -4 -4 6 27 44 45 32 1 5 1
o -5 -2 17 50 801-83-%60 32 12 3

-1 -6 -2 18 58 94. 100 74 40 io 4
U -5 -3 13 47 79 3-84- 62 33 13 3
0 -4 -4 4 25 44 47 34 17 o L
2 -1 -4 -3 4 12 14 9 4 1 0
2 1 0 -Z -2 0 0 0 0 0 0

1 1 2 1. 0 0 0 0 0 0 0

b) Tensor Product Solution, Non-Linear Formulation

-1 0 a 0 0 0 0 0 0 C C

1 0 0 a 2 4 4 3 1 0 0
0 -1 -3 0 t0 19 19 12 5 1 C
1 -3 -3 7 29 48 48 32 15 4 1
0 -6 -3 14 49 eO -81 E6 26 9 1
0 -6 -3 16 57 96 100 /70 33 11 2
0 -6. -6.. 10 46_ 83 --e8-' ! .l- 2.9 _9 ..L
2 -4 -6 1 24 48 52 35 15 4 0

3 0 -5 -4 3 14 17 11 4 0 0

2 .2 0 -3 _-2. 0 0. .. .0 . .0- C.-
3 1 2 1 0 0 0 0 0 0. 0

c) Tensor Product Solution, Linear Formulation

Figure 15. Confirmation of Tensor Matrix Product Jacobian Formulation,

Linear Finite Element Algorithm, Rotating Cone Test Case,

One-Quarter Turn.
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6. Continuity Constraint Formulation

An important aerodynamics problem corresponds to low subsonic

(M < 0.3) flows, wherein the fluid is essentially constant density. As

a consequence, the time derivative term is lost in the continuity equa-

tion 1. Correspondingly, in many of these aerodynamic applications, the

steady flow is dominantly unidirectional, amenable to prediction using a

viscous marching procedure, typically termed parabolic Navier - Stokes.

Equations 11-18 provide the appropriate differential equation system.

The basic requirement is to develop and evaluate a numerical algorithm

for enforcement of the continuity equation upon solution of the parabolic

partial differential equation system. Specifically, under the order of

magnitude analysis applied for generation of parabolic Navier - Stokes, the

non-parabolic continuity equation governs first-order effects, while the

parabolic transverse momentum equations describe second and higher-order

effects.

The theoretical concept, borrowed from the variational calculus, is en-

forcement of the continuity equation (solution) as a differential constraint

on solution of the transverse momentum equations. This measure for continuity

must be global, i.e., span R , and the deviation will vanish as continuity

becomes satisfied. An appropriate global measure of the deviation from

the solution of equation 11 is the harmonic function 4, satisfying

L(f) 2 - 7(j) = 0 (112)

subject to the boundary conditions on DR,

= --n 0 (113)aj

and setting c = 0 at least at one location on DR. As equation 11 be-

comes satisfied as a differential constraint, equations 112-113 become

homogeneous and the solution vanishes. Hence, L(p ) in equation 24

is replaced by L( h), the discretized statement of equations 112-113.

Assessment of algorithm performance focuses on determination of the

expansion coefficient P3, as well as implementation of the algorithm se-
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quencing. Following consequential numerical experimentation, r3  AT,

the downstream marching step, was determined suitable, coupled with a

procedure for summing sequential contributions to the constructed deriva-

tive matrix. Specifically, considering for exposition boundary layer flow,

the most elementary form of parabolic Navier - Stokes, the algorithm state-

ment (equation 26) for the u2 momentum equation is

{FU2} E {uI}T[A3OOO]({U2}j+I - {U2} )

+ AT({GU2}+ + {GU2}.) = {0} (114)
J+l

where {GU2} contains the contributions due to spatial distributions of

transverse convection, pressure and viscosity, as well as the continuity

constraint. At the pth iteration for step j+l, following solution of

L(4h ) for { }+' , the contribution to the continuity constraint is evalu-

ated as,

(GU201j+ = A2IOJ{4) +1  (115)ji - ~

This contribution is accumulated into the previous evaluations, yielding

{GU2} p-l {WUl n

J+l nl j+l(16

as the action of the continuity constraint in equation 114. Hence, each

successive determination of {€}corrects the action of all previous itera-

tions, such that {0) -)+{c}, where IEJ > 0 is an acceptable discrete level

of computed zero, in the limit as p increases without bound. This proce-

dure thus admits the correct (continuity preserving) solution for equations

112-113, i.e., 4 2 0 everywhere. Using the finite element algorithm state-

ment, equation 24, with , the solution statement for equations 112-

113 is.

{FPHI} = [A2ll1{} + + ((A200]{Ul}+ 1 +(CA201]{U2}P+ I) (117)
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A backwards difference formula is used to evaluate the elements of

{Ul}' . The various A prefix matrices are familiar, see Appendix A.
j+l

7. Numerical Results

A definitive test case for the continuity constraint algorithm is

provided by the two-dimensional boundary layer equations for laminar flow

in zero pressure gradient. The freestream level of u1(x,) remains invari-

ant, yet the corresponding plateau in u2 (x2 - 6) must decay uniformly as

x- . The Poisson formulation, equations 112-113, admits the required glo-

bal coupling. The level of u2(x2 ) ranges over f1ve digits on 0 _ x.. z 6,

and the computational solution must induce a vanishing normal derivative

for u.(x 2 = 0), see equation 11, since uj/ xj = 0 at x2 = 0.

Using a M = 32 non-uniform discretization of R1, the results generated

using the conventional finite element boundary layer algorithm (ref. 3),

and the continuity-constrained parabolic Navier-Stokes algorithm plot

as essentially identical. Table 5 summarizes these comparison solutions,

in terms of coordinates x2/ for which u2/u. changes by an order of mag-

nitude. The agreement is excellent over the entire range, as is the ap-

proximation to 3u2/1x 2 = 0 at x2/6 = 0. The constraint algorithm converges

to {I..QII} : lO- in typically 4 to 5 iterations per step. An intrinsic

error measure for equation 112 is the energy norm.

E(q ,)fl - 2 -dx, 18
R 'x2  (118)

In E(q,4), the error in satisfaction of continuity typically decreases

by a factor or two for each iteration, as illustrated in Table 6 for a

typical integration step. For laminar flow, the algorithm maintains

E( ,qb) 10-8 for iteration convergence to c lO-5 .

The corresponding levels for turbulent boundary layer prediction are
-54E(o,f) < 10 for c : lO"4. Figure 16 compares the continuity constraint

algorithm results to data (ref. 17) for the Bradshaw turbulent relaxing

flow experiment. This solution is indistinguishable from the direct

boundary layer solution, and was obtained using the turbulence kinetic

energy-dissipation function closure model and the complete equation system
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12-18. The continuity constraint algorithm is equally applicable to

ducted and/or semi-bounded flows, and should find considerable use in

computational aerodynamics.

Table 5

Transverse Velocity Distributions, U2 (x 2)x03

Laminar Incompressible Boundary Layer

Coordinate Boundary Continuity
(x2/6) Layer Solution Constraint Solution

0.0 .0 .0

0.0009 .0000011 .0000001

0.0021 .0000054 .0000030

0.0035 .0000149 .0000114

0.0095 .00011 .00011

0.031 .00118 .00118

0.10 .0128 .0127

0.67 .139 .138

1.0 .218 .218

Table 6

Continuity Constraint Algorithm Convergence

Laminar Incompressible Boundary Layer

Iteration Energy Norm, E(4)

1 0.69432 E(-9)

2 0.30670 E(-9)

3 0.15692 E(-9)

4 0.08028 E(-9)
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Figure 16. Computed Boundary Layer Integral Parameter Distributions

For Bradshaw Relaxing Flow, Linear Finite Element Continuity

Constraint Algorithm, Turbulence Kinetic Energy Closure Model.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

The objective of this research project is to derive and evaluate

versatile, accurate and efficient numerical alg,'-ithms for solution of

aerodynamic flowfields at large Reynolds number. Building upon work

reported in reference 5, the concept of a dissipative finite element al-

gorithm has been refined and extended to solution of a complete equation

set in aerodynamics. The test case numerical results are highly encour-

aging with respect to shock resolution and overall performance, utilizing

both a linear and a quadratic finite element embodiment of the theory.

The theoretical formulational statement of the algorithm has been extended

to a multi-dimensional description in generalized coordinates. The key

efficiency feature is identification of the tensor matrix resolution of

the Jacobian of the Newton algorithm for this statement. Finally, the

concept of application of the continuity equation solution, as a differ-

ential constraint on the momentum equation algorithm, has been validated.

The formulation is directly useful for viscous marching procedures, and

with some modifications could be equally useful for a low Mach number

Navier - Stokes solution algorithm.

These results on application of finite element solution concepts in

computational aerodynamics are highly encouraging. It is recommended

that the multi-dimensional computer program development be pursued with

vigor, to facilitate performance quantization for the next level of prob-

lem complexity.
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APPENDIX A

FINITE ELEMENT ALGORITHM HYPERMATRICES

LINEAR AND QUADRATIC BASIS ON ONE DIMENSIONAL SPACE

1. Linear Finite Element Formulation

{Al0}

[A001 F 2 1[A200] L 1 2

L 1 2

[A201]

[A210]

2e {: l{[A3000] T-6
113

[ A3001 ] 1 A
6e

-2 2
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F(-2
[A300] 6

[A3011] 1

2A2 J- l
e

-2j2

P2 32] [
[A40000] 1 3i:
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3-' -1 3 J- 17[A40010] - 12 2 1

: :2] ill

[A410001 *1 [ 1 1 i
[A12A] 1 F1 3]J~i

6e L[- 221

[A4001 1] - 11L :
6ALe [ 1 2] []
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[A41 1 0. L2 21 2 ][_2 -1] [11 2:

22 ~2e1 1

2. Quadratic Finite Element Formulation

{AlO} - 1 4
6

[A2001] = 2 16 2

1 2o

[A2O] i 0 4

[A210] 1 4- 0 4
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j20 16 -8
3-8 -8,8

120 ' 1161 -8!

[A3000] 2 16 192 16

-8 16 i . 20{ -8 -
8 16 20

-3 20 39

-180 361 -61

-18j 212-6
3 J -3)

-f-181 24) 6
[A3001] -OA -48 ' 48?

90A 61 (-241 (18)

31 f 01
6I I 18
6) 13 ) 30

72

- I



1 -2 2

12 8 0

[A301O] = 308J f {-
0 -8 - 2

-2 16 6

{i}6 l

1 48 0

- J -2 1

[A3100] 30A e 8 0 -8

-2 I 16 6

0 -8 -12

-I 6 10

-3 -4 7 J

[A3011] 3oA2 -3 64 -"32

-4 -32 36
7 -44 37
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37 36} {-}
44 -32 ~ -4

-44 -32 -4

[A3110] 48 64 48
joe -4 -32 44

7 -4
4 -32 -44
-3 36 1 137

L46 16 -3 16 16 -2 - -
16 16 -2  16 16 -2 -82

-3 -2 - -2 -8 2 1 -2 -3

6 1 6 -2 16 16 -8 -2 -8 -2
[A40000] "- 16 16 -8 16 256 16 -8 16 16

-2 -8 -8 16 1 L -2 16 16]

3 -2 1- 8 -2 1 -2 -3

-2 -8 L-8 16 16 -2 16 16

L -2 -2 16 16 -3 16 46 _

-105 132 -27] [-44 48 -41 9 -12 3[-44 48 -4jj-48 64 -161 8 0 -81
9 -12 3] L 8 0 -8 L -312 -9]

1 -44 48 -4 -48 64 11 8 0 -8]
(A40001] e -48 64-16 -192 0 192 16-64 48

L 8 0 -8 L 16 -64 48] 4 -48 44

9 -12 3 8 0-8 -312

8 0 16 -64 48 4 -48 44

Ll-3 12 -- 4 -48 44 27 -132 105
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-44 9 1 32 48 12 -27 -4 3

-44  -4 - 48 64 0 -4 -16

9 3 -12 0 12 3 -8 -

1 -4 -48 8 48 64 O] -4 -16 -8
[A400103 1 -48 -192 16 64 0 -64 -16 192 48

8 16 4  0 -64 -48 -8 48 4

9 8 -3 -12 0 12 3 -8 -9

8 16 4 0 -64 -48 -8 48 44
-3 4 27 L12 -48 -132 -8 44 105

p105 -44 91 -44 -48 8] 9 8 3
9 - 16 4 -3 4

132 48 -12 48 64 0] -12 0 12
[A41000] 420Ae  48 64 O 64 0 -64 0 -64 -48

-12 0 12] 0 64 -48 12 -48 -132

-4:I6 -8 -16 192 48 -8 48 4

3 -8 - -8 48 44 -9 44 105J

F184 -228 44 -228 288 -60] 44 -60 1
94 -104 101 -104 96 8 10 8 -18

-19 24 -5 L24 -48 24 -5 24 -)

[A400I)1] 176 -128 -48 j-128 256 -128( -48 -128 176)
21e - -18 8 10] L 8 96 -104j 10 -1044L-19 24 -5] 24 -48 24] -5 24 -191

-18 8 10 8 96 -104 10 -104 94
16 -60 44 L-60 288 -228.L 44 -228 184
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184 94 -19 -228 -104 24 44 10 -5

I-228.104 241 r288  96 -48 -60 8 241
- 44 10 -J L-60 8 24 L 16 -18 -191

1 V94 176 -181 F104 -128 8 [ 10 -48 10]
[A40110] = 210 2  -104 -128 8 96 256 96 8 -128 -104

L 10 -48 1O0 8 -128 -104 L-18 176 94]

19-18 16 [ 24 8 -601 -5 10 44]

24 8 -60 -48 96 288 24 -104 -228

-5 10 44 24 -104 -228j -19 94 184j

F184 94 -19] 94 176 -18 -19 -18 16
-228 -104 24 -104 -128 8 24 8 -60
S44 10 -5 L 10 -48 10~ -5 10 44

-228 -104 24 -104 -128 8 24 8 -60

[A411001 2 288 96 -48 96 256 96 -48 96 288
L-60 8 24 8 -128 -104 24 -104 -228

F44 10 - 1F10 -48 10~ -5 10 44
-60 8 24 8 -128 -104 24 -104 -228

16 -18 -Ii -18 176 94 -19 94 184j

4184 -228 94 -104 I0 -19 24 -5

-228 288 -60 -104 96 8 24 -48 24

L 44-60 16 10 8 -18j -5 24-19]

94 -104 1 [ 176 -128 -48 -18 8 10

[A40101] 2 -104 96 8 1-128 256 -128 8 96 -104
e 10 8 -18 -48 -128 1761 10 -104 94]

-19 24 -5 1 -18 8 1l 16 -60 44

24 -48 24 8 96 -1041 -60 288 -228

-5 24 -19 L 10 -104 94 L 44 -228 184]
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APPENDIX B

FINITE ELEMENT ALGORITHM HYPERMjAT RICES

LINEAR BASIS ON TWO-DIMENSIONAL SPACE

1. Linear Tensor Product Basis (A e det J):

{B1O) { }
4 2 1 2

[§2001 ~ 4
4 2

(sym) 4

3 93 1

3 1

1 1

1 3 3 1
1 ~ 3 3
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-6 6 2 -2 --6 -3 -1
-3 3 1 -1 -3 -6 -2 -
-'I 1 1 -I 1 -2 -2 -
-"2 " 2. -. -1 -2 -1 -2

3 ; 1 -1 6 3 1 2
-6 6 2 -2 3 6 2

-2 2 - ] 2 2

-3 3 1

F.B300 1  " - 1 1 [ 3 0 1 0 ] = 1 2

36 - 3 -

"2 2 -2 1 2 2 1
"-2° 2 6 -6 1 2 6 3
1 1 3 " 7 2 1 .3 6
, .- 2 .- - 2 - -1 -2

-I 1 1 -1 I -2 -2 -
-1 1 3 -' 1 -2 -6 -3
-2 2 6 -d. 2 -I -] -A,

-6 -2 2 -6 -2 - -3
- -2 ," ""-I -1 1 1 2 1 -2 -2-3 -2 1 3 - "' -2 -6

S -6 6 -2. -6 -3 -1-1 3 1 [83020]) - 6 -

[B00] -1 1 1 1 -2 2 2

-i -3 3 1 2 6 3 1
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[B400003 = 900

144 36 9 36 36 24 6 9 9 6 4 6 36 9 6 24
36 24 6 9 24 36 9 6 6 9 6 4 9 6 4 6

9 6 4 6 6 9 6 4 4 6 9 6 6 4 6 9
36 9 6 24 9 6 4 6 6 4 6 9 24 6 9 36
36 24 6 9 24 36 9 6 6 9 6 4 9 6 4 6
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-9 -6 -2 -3 -6 -9 -3 -2 6 9 3 2 9 6 2 3
-6 -9 -3 -2 -9 -36 -12 -3 9 36 12 3 6 9 3 2
-2 -3 -3 -2 -3 -12 -12 -3 3 12 12 3 2 3 3 2
-3 -2 -2 -3 -2 -3 -3 -2 2 3 3 2 3 2 2 3
-3 -2 -2 -3 -2 -3 -3 -2 2 3 3 2 3 2 2 3
-2 -3 -3 -2 -3 -12 -12 -3 3 12 12 3 2 3 3 2

2 -3 -9 -6 -3 -12 -36 -9 3 12 36 9 2 3 9 6
-3 -2 -6 -9 -2 -3 -9 -6 2 3 9 6 3 2 6 9

-12 -3 -3 -12 -3 -2 -2 -3 3 2 2 3 12 3 3 12
-3 -2 -2 -3 -2 -3 -3 -2 2 3 3 2 3 2 2 3

3 -2 -6 -9 -2 -3 -9 -6 2 3 9 6 3 2 6 9

-12 -3 -9 -36 -3 2 6 -9 3 2 6 9 12 3 9 36

(840100)

-3t -12 -3 -9 -12 -12 -3 -3 -3 -3 -2 -2 -9 -3 -2 -6
-12 -12 -3 -3 -12 -36 -9 -3 -3 -9 -6 -2 -3 -3 -2 -2
-3 -3 -2 -2 -3 -9 -6 -2 -2 -6 -9 -3 -2 -2 -3 -3
-9 -3 -2 -6 -3 -3 -2 -2 -2 -2 -3 -3 -6 -2 -3 -9
36 12 3 9 12 12 3 3 3 3 2 2 9 3 2 6

12 12 3 3 12 36 9 3 3 9 6 2 3 3 2 2
3 3 2 2 3 9 6 2 2 6 9 3 2 2 3 3
9 3 2 6 3 3 2 2 2 2 3 3 6 2 3 9

9 3 2 6 3 3 2 2 2 2 3 3 6 2 3
3 3 2 2 3 9 6 2 2 6 9 3 2 2 3 3
2 2 3 3 2 6 9 3 3 9 36 12 3 3 12 12
6 2 3 9 2 2 3 3 3 3 12 12 9 3 12 36

-9 -3 -2 -6 -3 -3 -2 -2 -2 -2 -3 -3 - -
-3 -3 -2 -2 -3 -9 -6 -2 -2 -6 -9 -3 -2 -2 -3 -3
-2 -2 -3 -3 -2 -6 -9 -3 -3 -9 -36 -12 -3 -3 -12 -12
-6 -2 -3 -9 -2 -2 -3 -3 -3 -3 -12 -12 -9 -3 -12 -.6
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[840200] :-1360

-36 -9 -3 -12 -9 -6 -2 -3 -3 -2 -2 -3 -12 -3 -3 -12
-9 -6 -2 -3 -6 -9 -3 -2 -2 -3 -3 -2 -3 -2 -2 -3
-3 -2 -2 -3 -2 -3 -3 -2 -2 -3 -9 -6 -3 -2 -6 -9

-12 -3 -3 -12 -3 -2 -2 -3 -3 -2 -6 -9 -12 -3 -9 -36
-9 -6 -2 -3 -6 -9 -3 -2 -2 -3 -3 -2 -3 "2 -2 -3
-6 -9 -3 -2 -9 -36 -12 -3 -3 -12 -12 -3 -2 -3 -3 -2
-2 -3 -3 -2 -3 -12 -12 -3 -3 -12 -36 -9 -2 -3 -9 -6
-3 -2 -2 -3 -2 -3 -3 -2 - -3 -9 -6 -3 -2 -6 -9

9 6 2 3 6 9 3 2 2 3 3 2 3 2 2 3
6 9 3 2 9 36 12 3 3 12 12 3 2 3 3 2
2 3 3 2 3 12 12 3 3 12 36 9 2 3 9 6
3 2 2 3 2 3 3 2 2 3 9 6 3 2 6 9

36 9 3 12 9 6 2 3 3 2 2 3 12 3 3 12
9 6 2 3 6 9 3 2 2 3 3 2 3 2 2 3
3 2 2 3 2 3 3 2 2 3 9 6 3 2 A 9

12 3 3 12 3 2 2 3 3 2 6 9 12 3 9 3t

[B40110] = 1360

24 12 3 6 -24 -12 -3 -6 -6 -3 --2 -4 6 3 2 4
12 24 6 3 -12 -24 -6 -3 -3 -6 -4 -2 3 6 4 2
3 6 4 2 -3 -6 -4 -2 .-2 -4 -6 -3 2 4 6 3
6 3 2 4 -6 -3 -2 -4 -4 -2 -3 -6 4 3 6

-24 -12 -3 -6 24 12 3 6 6 3 2 4 -6 -3 -C -4
.-.12 -24 -6 -3 12 24 6 3 3 6 4 2 -3 - -4 -2
-3 -6 -4 -2 3 6 4 2 2 4 6 3 -2 -4 -3
-6 -3 -2 -4 6 3 2 4 4 2 3 6 -4 -2 -3 -6
-6 -3 -2 -4 6 3 2 4 4 2 3 6 -4 -2 -3 -6
-.3 -6 -4 -2 3 6 4 2 2 4 6 3 -2 -4 -6 -3

-2 -4 -6 -3 2 4 6 3 3 6 24 12 -3 --6 -24 -12
-4 -2 -3 -6 4 2 3 6 6 3 12 24 -6 - -12 -24
6 3 2 4 -6 -3 -2 -4 -4 -2 -3 -6 4 2 3 6
3 6 4 2 -3 -6 -4 -2 -.2 -4 -6 -7 2 4 6 3
2 4 6 3 -2 -4 --6 -3 3 -6 -24 -i" 3 -14 
4 2 3 6 -4 -2 -3 - -6 -, -12 -24 6 . 12 2
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[B40220] = 1

24 6 3 12 6 4 2 3 -6 --4 -2 -3 -24 -6 -3 -12

S 4 2 3 4 6 3 -4 -6 -3 - -6 -4 -3

3 4 6 2 3 6 4 -2 -3 -6 -4 -3 -2 -4 -6
12 3 6 24 3 2 4 6 -3 -2 -4 -6 -12 -3 -6 -24

6 4 2 3 4 6 3 2 -4 -6 -3 -2 -6 -4 -2 -3

4 6 3 2 6 24 12 3 -6 --24 -12 -3 -4 -6 -3 -2

2 3 6 4 3 12 24 6 -3 -12 -24 -6 -2 -3 -6 -4

3 4 6 2 3 6 4 -2 -3 -6 -4 -3 -2 -4 -6

-6 -4 -2 -3 -4 -6 -3 -2 4 6 3 2 6 4 2 3

-4 --6 -3 -2 -6 -24 -12 -3 6 24 12 2 4 6 3 2
-2 -3 -6 -4 -3 -12 -24 --6 3 12 24 6 2 3 6 4

-3 --2 -4 -6 -2 -3 -6 -4 2 3 6 4 3 2 4 6

-24 -6 -.3 -12 -6 -4 -2 -3 6 4 2 3 24 6 3 12
-6 -4 -2 -3 -4 -6 -3 -2 4 6 3 2 6 4 2 3

- -2 4 -6-2 -3 -6 -4 2 3 6 4 3 2 4 6
-12 -3 -o 724 -3 -2 -4 -6 3 2 4 6 12 3 6 24

[B40120] =.1
144

' 3 1 3 3 3 1 1 -3 -3 -1 -1 -9 -3 - -3

3 3 1 1 3 9 3 1 -3 -9 -3 -1 -3 -3 -1 -1
I 1 I 1 1 3 3 1 -1 -3 -3 -1 -1 -1 -1 -1

3 1 1 3 1 1 1 i -1 -1 -1 -1 -3 -1 -1 -3
-9 -3 -1 -3 -3 -3 -1 -1 3 3 1 1 9 3 1 3

-3 -3 -I -1 -3 -9 -3 -1 3 9 3 1 3 3 1 1
.1 -1 -1 -1 -1 -2 -3 -1 1 3 3 1 1 1 1 1

-3 -1 -1 -3 -1 -1 -1 -i 1 1 1 3 1 1 3
-3 -1 -] -3 -1 -I -1 -1 1 1 1 1 3 1 1 3
-1 -1 -1 -1 -1 -3 -3 -1 1 3 3 1 1 1 1 1

.-1 - -3 -3 -1 -3 - -3 1 3 9 3 1 1 3 3
-3 -1 -3 -9 -1 -I -3 -3 1 1 3 3 3 1 3 9

3 1 1 3 1 1 1 1 -1 -1 -1 -1 -3 -1 -1 -3
1 1 1 1 1 3 3 1 -1 -3 -3 -1 -1 -1 -1 -1

1 3 3 1 3 9 1 -3 -9 -3 -1 -1 -3 -3

. 3 ' 1 3 -1 -1 -3 -3 -3 -1 -3 -9
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[B40210] = 144

' 3 1 3 -9 -3 -1 -< 3 3 -1 1 -3 3 1 1 3
3 3 1 1 -3 -3 -1 -I -1 -1 -1 -1 1 1 1 1

1 1 1 1 -t -1 -i -± -i --1 .-3 -37  1 i :3 -,

3] 1 1 3 -3Z -- --I -3 -3 -1 -3 -9 3 1 3{ ;
3 1 1 -3 -3 -I -1 -1 --1 -1 -1 2 1 1

,i 9 3 1 -3 - - - -- --1 1 3 3 1

1 3 3 1 -1 -3 -3 -1 -- - 9 -3 1 3 9 3
1 1 1 1 -1 -i -1 -i -1 --1 -3 -3 1 1 3
-3 1 -3 -- -1 1 1 1 1 1 1 -1 --1 - 1

3 -9 -7 -1 9 3 1 3 -3 -

1- -3 -3 -1 1 3 3 1 1 3 -. --

-1 -1 -1 -1 1 3 1 1 1 1 A 3 -1 -1 -3 -

-9 -3 -1 -3 9 3 1 1 3 -3 - -l -3

• 3 -3 -1 -1 3 1 1 1 1 1 1 -1 -1 -1 -1
-1 -1 -1 -1 1 1 1 1 1 1 3 3 -1 -1 -3 -3

•-3 -1 -I -3 3 1 1 3 3 1 3 -' - -3 -
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